Central nervous system impact of vorinostat, hydroxychloroquine and maraviroc combination therapy followed by treatment interruption in individuals treated during acute HIV infection (SEARCH 026)

E Kroen1, J Ananworanich1,2,3, LT Le4, J Intasan4, K Benjampong5, S Pinyakorn2,2, P Karnsomsap1, S Tipsuk6, S Rattanamanee7, J Hellmuth8, P Eamyong1, K Eubanks9, H Yang10, N Phanuphak1, M de Souza1,6, V Valcour11, S Spudich12, SEARCH 019 and 026 study groups.

1SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand; 2U.S. Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA; 3Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA; 4Yale University, New Haven, CT, USA; 5University of California, San Francisco; 6Cooper Human Systems, MA, USA.

Background:
- Strategies to reactivate the HIV reservoir and analytic treatment interruption (ATI) could each have adverse consequences on the central nervous system (CNS) through induction of neuroinflammation or viral escape.
- We performed a CNS study in parallel with a systemic study of vorinostat/hydroxychloroquine/maraviroc (VHM) followed by ATI (study SEARCH 019, abstract TUAX0101LB, late breaker; 19 July 2016, 13:00, session room 6).

Methods:
- Study participants and intervention design:
 - Acutely treated participants with ≥48 weeks viral suppression and CD4 ≥ 250 cells/mm³.
 - Randomization to 10 weeks of oral VHM (see Figure 1 for dose/schedule) + ART (n=10) vs. ART alone (n=5), followed by ATI with ART resumption at plasma HIV RNA >20 copies/ml. Baseline LPs were performed in all participants.

Results (continued):

In all graphs, Wk 10 VHM denotes visit during VHM randomization phase; symbols indicate participants receiving VHM+ART (red) or ART alone (blue).

Figure 2. CSF HIV RNA with ART +/- VHM and ATI. CSF HIV RNA was <20 copies/ml or <0.27 copies/ml at Wk 0 and Wk 10 in all participants. 3-4 weeks after ATI, CSF HIV was detected in two VHM+ART participants (13.1 copies/ml vs. 25 and 42 copies/ml with corresponding plasma HIV RNA of 35,706 and 329 copies/ml (A & B). CSF HIV RNA was detected by single copy assay (≥ 0.27 copies/ml) in 6/8 participants (75%) during ATI (C).

Optional CNS sub-study:
- Lumbar puncture (LP) for cerebrospinal fluid (CSF) sampling at Wk 0 prior to treatment, Wk 10, and during ATI at first plasma HIV RNA >20 copies/ml. CSF HIV RNA was measured by standard assays as well as a single copy assay with a lower limit of detection of 0.27 copies/ml.
- Neuropsychological (NP) testing composed of 13 tests (summarized as NPZ Global) at Wk 0, Wk10, during ATI, and after resuming ART.
- 3T brain magnetic resonance imaging/spectroscopy (MRI/MRS) at Wk 0 and 6-8 weeks after ART resumption (see Figure 1).

Results:
- Ten SEARCH 019 participants enrolled in the CNS sub-study (VHM+ART=8, ART=2); one withdrew due to adverse VHM effects, and one ART-only participant did not have LPs. Baseline demographics are shown as median (range) in Table 1.

Table 1. Demographics of Study Participants

<table>
<thead>
<tr>
<th>Group</th>
<th>VHM+ART (n=8)</th>
<th>ART (n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV duration prior to ART, days</td>
<td>16 (12-27)</td>
<td>27 (21-32)</td>
</tr>
<tr>
<td>Age, years</td>
<td>30 (22-51)</td>
<td>32 (30-40)</td>
</tr>
<tr>
<td>Male:Female</td>
<td>7:1</td>
<td>1:1</td>
</tr>
<tr>
<td>ART duration, weeks</td>
<td>224 (79-294)</td>
<td>203 (111-295)</td>
</tr>
<tr>
<td>CD4 count, cells/mm³</td>
<td>623 (501-1106)</td>
<td>1461 (1311-1612)</td>
</tr>
<tr>
<td>Plasma VL, copies/ml</td>
<td><20</td>
<td><20</td>
</tr>
</tbody>
</table>

Conclusions:
- VHM, a latency reactivating intervention, did not lead to detectable CSF HIV RNA nor evidence of persistent adverse outcomes based on CSF inflammatory measures, neuropsychological testing performance, or brain MRS.
- Monitored ATI was associated with CNS immune activation and HIV RNA in CSF as detected by standard (in VHM+ART participants) and single copy assays (in both groups), though HIV rebound levels were lower than in blood.

Acknowledgments: We sincerely thank the RV254 and SEARCH 026 study participants, Frank Maharan at the NCI, Rob Danziger and Jeff Lifson at Los Altos Bombed Rag, Ken Cooper at Cooper Human Systems, John Kapson at Kapon Analytics, and the National Institutes of Health through grants RO1MH093513, RO1MH093513, and MHRP support of cooperative agreements W81XWH-07-1-0067. This paper contains discussions of off-list products. The views expressed are those of the authors and should not be construed to represent the positions of the U.S. Army or the Department of Defense or other institutions listed.